If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x-130=0
a = 1; b = 18; c = -130;
Δ = b2-4ac
Δ = 182-4·1·(-130)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{211}}{2*1}=\frac{-18-2\sqrt{211}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{211}}{2*1}=\frac{-18+2\sqrt{211}}{2} $
| 4b2-5b-4=0 | | -12(5n+4)=-5n-48 | | 19-9x=-5(x-11) | | 5p=3p-16 | | 5(3x-2)=2(2x+1) | | 10+3x=24-x-3x | | q^2+4q-6=0 | | 3x-0.5=0.7 | | 4x+9=49−6x | | 24-8x=15x | | (2x-3/3)-(x-1/2)=x/3 | | 2x-3/3-x-1/2=x/3 | | -16+11s=s-6+20s | | 7x+14-5x+15=3 | | -2y-11=-y | | −(7x)+5=47 | | 12(x)+8(2.5)=256 | | −7x+5=47 | | -18-4g=-2g+2 | | 43/x=37 | | 42/x=37 | | 31/2=3/5k | | 11+6x=0 | | -4k+10=-8-k | | 2x+3x=450 | | -10-n-10=9n+10 | | -8+7x+3=5x+4+4x+5 | | (7z/4)-18=8-3z/4 | | 3(2x+11)=20 | | (7z/4)-18=(8-3z)/4 | | -1+4y+7y=-9+10y | | 2a+2a=0 |